Extensions 1→N→G→Q→1 with N=C2xC3.A4 and Q=C22

Direct product G=NxQ with N=C2xC3.A4 and Q=C22
dρLabelID
C23xC3.A472C2^3xC3.A4288,837

Semidirect products G=N:Q with N=C2xC3.A4 and Q=C22
extensionφ:Q→Out NdρLabelID
(C2xC3.A4):C22 = C22xC3.S4φ: C22/C2C2 ⊆ Out C2xC3.A436(C2xC3.A4):C2^2288,835

Non-split extensions G=N.Q with N=C2xC3.A4 and Q=C22
extensionφ:Q→Out NdρLabelID
(C2xC3.A4).1C22 = C12.1S4φ: C22/C2C2 ⊆ Out C2xC3.A4726-(C2xC3.A4).1C2^2288,332
(C2xC3.A4).2C22 = C4xC3.S4φ: C22/C2C2 ⊆ Out C2xC3.A4366(C2xC3.A4).2C2^2288,333
(C2xC3.A4).3C22 = C22:D36φ: C22/C2C2 ⊆ Out C2xC3.A4366+(C2xC3.A4).3C2^2288,334
(C2xC3.A4).4C22 = C2xC6.S4φ: C22/C2C2 ⊆ Out C2xC3.A472(C2xC3.A4).4C2^2288,341
(C2xC3.A4).5C22 = C23.D18φ: C22/C2C2 ⊆ Out C2xC3.A4366(C2xC3.A4).5C2^2288,342
(C2xC3.A4).6C22 = C2xC4xC3.A4φ: trivial image72(C2xC3.A4).6C2^2288,343
(C2xC3.A4).7C22 = D4xC3.A4φ: trivial image366(C2xC3.A4).7C2^2288,344
(C2xC3.A4).8C22 = Q8xC3.A4φ: trivial image726(C2xC3.A4).8C2^2288,346

׿
x
:
Z
F
o
wr
Q
<